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ABSTRACT: Current-induced magnetization switching by spin−
orbit torque generated in heavy metals offers an enticing realm
for energy-efficient memory and logic devices. The spin Hall
efficiency is a key parameter in describing the generation of spin
current. Recent findings have reported enhancement of spin Hall
efficiency by mechanical strain, but its origin remains elusive.
Here, we demonstrate a 45% increase in spin Hall efficiency in
the platinum/cobalt (Pt/Co) bilayer, of which 78% of the
enhancement was preserved even after the strain was removed.
Spin transparency and X-ray magnetic circular dichroism
revealed that the enhancement was attributed to a bulk effect
in the Pt layer. This was further confirmed by the linear
relationship between the spin Hall efficiency and resistivity,
which indicates an increase in skew-scattering. These findings shed light on the origin of enhancement and are promising in
shaping future utilization of mechanical strain for energy-efficient devices.
KEYWORDS: spin Hall effect, spin−orbit torque, spin−orbit coupling, spin-torque ferromagnetic resonance, flexible substrate,
mechanical strain

Since the demonstration of the spin Hall effect, the ability
to manipulate magnetization with the use of current-
induced spin−orbit torque (SOT) for energy-efficient

memory and logic devices has attracted significant interest in the
field of spintronics.1−6 The spin Hall effect capitalizes on the
spin−orbit interaction in a nonmagnetic material to generate a
pure spin current from an unpolarized charge current. In a
heavy-metal/ferromagnetic layer (HM/FM) bilayer system, this
results in a magnetic torque acting on the adjacent ferromagnet,
thus allowing for SOT-induced magnetic switching.7−11 Heavy
metals, such as platinum (Pt), tantalum (Ta), and tungsten (W),
have been widely explored due to their strong spin−orbit
interaction.3,12−16 In particular, Pt, in spite of its higher cost, has
been pivotal and often seen as a benchmark in the development
of spin Hall materials due to its large intrinsic spin Hall
conductivity, easy growth, and ease of integration into existing
manufacturing processes.
As such, attempts to improve the spin Hall efficiency,

e T(2 / )eff int SH Ptθ σ ρ= ℏ , of Pt have been conducted extensively
by understanding and manipulating the three distinct micro-
scopic mechanisms: the skew, the side jump, and the intrinsic
scattering.3,13,17−20 Here, e is the elementary charge, ℏ is the

reduced Planck’s constant, Tint is the spin transparency, σSH is
the spin Hall conductivity, and ρPt is the electrical resistivity. To
date, most of such attempts to enhance the spin Hall efficiency
are focused on alloying the HM with lighter and more
conductive metals,21−24 having insertion layers within the
HM25 and the varying deposition condition of the HM.26,27

Among the different methods used, a promising technique of
enhancing the spin Hall efficiency is the use of mechanical strain.
Recent work by T. Nan and E. Liu has shown that tensile strain
enhances θeff in spin Hall materials, while compressive strain
deteriorates it. However, the understanding behind the origin of
the scattering mechanism that leads to this enhancement
remains unclear, and more studies are needed to deepen our
understanding of the physics of flexible spintronics devices.28,29
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In this work, we study the effects of tensile strain on θeff in a
Pt/Co bilayer system with the use of the spin-torque
ferromagnetic resonance technique (ST-FMR) and demon-
strate that the strain-induced θeff enhancement remains even
after the strain has been removed. Spin transparency and X-ray
absorption spectroscopy/X-ray magnetic circular dichroism
(XAS/XMCD) results rule out the possibility of an improve-
ment in the platinum/cobalt (Pt/Co) interface quality or
interfacial spin−orbit interaction, thus leading us to hypothesize
that the enhancement is a bulk effect in Pt. This is confirmed by
the increased resistivity of Pt when strained, implying that tensile
strain results in additional scattering within the Pt bulk.
Furthermore, the switching current density is significantly
reduced with the decrease in Gilbert damping parameter. These
findings establish an understanding on how strain affects the spin
Hall generation in a heavy metal and offer a very compelling
justification to push the boundaries of existing spin Hall material
for low-power SOT application.

RESULTS AND DISCUSSION

Material Characterization. The spin current generation
mediated by the applied mechanical tensile strain on Pt was
characterized using the ST-FMR measurement. Figure 1a
depicts a schematic illustration of the measurement setup and
device structure with an inset showing an optical image of the
device. All films used in this study were prepared using
magnetron sputtering onto unstrained Kapton at room temper-
ature. As such, the initial internal stress from the fabrication of
the films is the same for all samples and is thus negligible. The
strain is applied after the device fabrication during the device
characterization process. Bilayers Pt(5 nm)/Co(5 nm) were
fabricated with a 5 nm titanium (Ti) seed and capping layer for
film adhesion and oxidation prevention. A photo of an as-grown
Pt/Co bilayer on the Kapton substrate is shown in Figure 1b,
demonstrating its flexibility. Here, Pt plays the role of the heavy
metal layer in producing SOTs via the spin Hall effect.
Figure 1c and d illustrates how the strain used in this study was

applied after fabrication in two different configurations: tensile
strain in the parallel and orthogonal direction to the radio-

Figure 1. (a) Schematic illustration of a Pt/Co bilayer for the ST-FMR measurement. The green and navy arrows represent the precessing
magnetization in the Co layer and applied external field, respectively. An RF current was applied along the longitudinal direction (x-axis) of the
device, generating two orthogonal torques as it passes through the heavymetal. An optical image of the device is shown in the inset. (b) Photo of
an array of strained ST-FMR devices on the flexible Kapton substrate. (c) Schematic of strain application onto the sample using a plastic mold in
different directions. Strain in the parallel and (d) orthogonal direction as the radiofrequency current was applied during the ST-FMR
measurement. (e) X-ray diffraction pattern of 25 nm thick Pt/Co samples showing the shift between the Pt(111) and the Cu(111) peak. The
pristine sample is as-deposited, while the εpost = 1.5% sample was strained for 60 min before measurement. (f) Resistivity of Pt under tensile
strain εin and when the substrate is relaxed after tensile strain εpost is applied.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.0c09404
ACS Nano XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig1&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.0c09404?rel=cite-as&ref=PDF&jav=VoR


frequency (RF) current. The bending strain ε of the Kapton film
in the bending direction was estimated by using ε = t/2R, where t
and R are the total thickness of the substrate (120 μm) and
bilayer structure and the curvature radius of the mold,
respectively.30 By varying the radius of curvature of the mold
used, a tensile strain ε of 0 to approximately 1.5% was employed
in this study. All strain used in this experiment is tensile strain if
not specifically mentioned. In situ strain measurements are
described by εin, while measurements taken after relaxing the
strain are defined as εpost, where εpost is the magnitude of the
tensile strain applied for 60 min before relaxing it for
measurement.
X-ray diffraction (XRD) was performed on two different Pt/

Co thin-film samples. The first sample is kept in pristine
condition, while the other was relaxed after applying a 1.5%
tensile strain for 60 min. The XRD spectra are as presented in
Figure 1e. After the application of strain, the Pt(111) peakmakes
a 0.14° shift to the left, while the Co(002) peak remains
unchanged. This different behavior is due to the difference in
Poisson’s ratio between the twomaterials, with Pt having a larger
ratio of 0.41 while Co is 0.29.31 The shift in Pt(111) peak
suggests a change in Pt’s bulk property and an increase in lattice
constant due to the tensile strain. One such property change
observed is the electrical resistivity (ρPt) of Pt.
As tensile strain is applied along the longitudinal direction (x-

axis) of the Pt microstrip, the strip expands and narrows along
the direction of strain. Narrowing of the strip results in an
increase in resistivity, which scales with the magnitude of the
strain as shown in Figure 1f. This change can be described by the
gauge factor given by GF = (ΔR/R)/ε, where ΔR/R is the
relative change in resistance and ε is the applied strain.32 For the
Pt strained along the x-axis, the GF is calculated to be 10.5± 0.5,
which is consistent with previous findings.33 Upon removing the
strain, the film relaxes but the shift in lattice constant of Pt
remains, indicating that the enhanced resistivity is still present
due to internal stress. This residual strain is speculated to be the
result of a change in lattice constant and the possibility of grain
rotation mediated by grain boundary dislocation. The slight
decrease in resistivity is caused by the relaxation of the substrate

reversing the narrowing of the strip. On the other hand, exerting
strain in the transverse direction (y-axis) of themicrostrip results
in a less pronounced change in resistivity ρPt.

Spin-TorqueGeneration EfficiencyAnalysis.To system-
atically evaluate the effects of tensile strain in the Pt layer on the
spin-torque efficiency, ST-FMR was employed for bilayer Pt/
Co. During the measurement, an RF current (JC) was injected
into the coplanar waveguide and flows along the long axis of the
microstrip device (10 μm× 50 μm). Simultaneously, an external
magnetic field (Hext) was applied at 45°. The longitudinal RF
current passing through the Pt layer generates an oscillating
transverse spin current by the spin Hall effect (SHE), which is
then injected into the adjacent Co layer. The magnetization of
Co experiences three different torques induced by the RF
current: Oersted-field torque as current passes through the Co
layer; field-like and damping-like torque produced by the
current-induced SOT from the Pt layer. At the resonance field
(Hres) when the microwave frequency matches the precessional
frequency of the magnetization, the FMR condition is satisfied
and the oscillating torques will result in the oscillation of the
device resistance due to anisotropic magnetoresistance in the Co
layer. The mixing of the RF current and oscillating resistance
results in a rectified DC voltage signal (Vmix) across the device.
Using a bias tee, Vmix can be measured during the microwave
current application.
The ST-FMR spectra of bilayer Pt/Co was measured using a

microwave power of 12 dBm and a frequency range between 8
and 17 GHz in steps of 1, and the measured Vmix is expressed as

V S
H

H H H

A
H H H

H H H

( /2)
( ) ( /2)

( )( /2)
( ) ( /2)

mix

2

ext res
2 2

ext res

ext res
2 2

= Δ
− + Δ

+
− Δ

− + Δ (1)

where ΔH and Hext are the spectra width and the applied
external field and S and A are the magnitude of the symmetric
and antisymmetric components of the Vmix, respectively. The
symmetric Lorentzian contribution is produced when the spin
Hall torque from the generated spin current and the magnet-

Figure 2. Schematic of sample and the measured ST-FMR spectra at 12 GHz at different strained conditions. The ST-FMR spectra Vmix are
normalized to their minimum value. (a) Pristine, (b) while 1.5% strain is applied, and (c) after strain is removed with the sample flattened.
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ization precession are in phase, while the antisymmetric
Lorentzian contribution arises from the phase difference
between the Oersted field and the field-like torque from the
charge current passing through the Pt layer and the magnet-
ization precession. The effective magnetization (Meff) was
obtained by an in-plane magnetization Kittel equation fitting

f H H M H H/2 ( )(4 )res K eff res Kγ π π= + + + , where γ is the
gyromagnetic ratio andHK is the total magnetic anisotropy field.
When exposed to tensile strain, Meff decreases, and this
corresponds to an enhancement in the HK and surface
anisotropy constant (KS) given by K M t M M2 ( )S S FM S effπ= −
, where MS and tFM are the saturation magnetization of Co and
thickness of the Co layer, respectively (refer to the Supporting
Information (SI), Figures S1d and S2a).25,34,35 The Meff
decrease observed could also be attributed to the slight decrease
in theMS and increase in strain-induced anisotropy (refer to SI,
Figure S3a).
The field-like torque in the Pt/Co bilayer is assumed to be

negligible due to the sufficiently thick Pt layer used, and this
assumption is consistent with previous work for Pt.16,36 With
this, the spin Hall efficiency for the Pt/Co bilayer can be
determined using the line-shape method described by the
following equation:

S
A

e M t t M
H

1
4

eff
0 S FM NM eff

res
θ

μ π
=

ℏ
+

(2)

where tNM is the thickness of the Pt layer. The illustration in
Figure 2 establishes the different stages of the experiment. For
ease of comparison, all three ST-FMR spectra of bilayer Pt/Co
were normalized to its minimum value. From the line-shape
equation, the magnitude of S/A is proportional to the spin Hall
efficiency, which implies that a larger Vmix/Vmin magnitude
corresponds to a larger spin Hall efficiency.
Using the Vmix/Vmin value for the pristine Pt/Co as a

benchmark in Figure 2a, the effects of strain on the spin Hall

efficiency can be observed. At εin = 1.5%, Vmix/Vmin increases by
36% as shown Figure 2b, suggesting that an enhancement in the
spin Hall efficiency was brought about by the strain, which was
previously reported.28,29,37 However, a more striking observa-
tion was made after the removal of the strain in Figure 2c, which
shows that the strain-induced increment was retained. The
corresponding spin Hall efficiency was calculated and is
summarized in Figure 3a and b.
The θeff dependence of tensile strain in the parallel and

orthogonal direction to the current is shown in Figure 3a. Here,
θeff increases proportionally with tensile strain along the
direction of current. When εin = 1.5% is applied, θeff is enhanced
by 45% from 0.070± 0.003 to 0.101± 0.005. Interestingly, upon
removing the tensile strain in this direction, 78% of the θeff
enhancement is retained, giving a value of 0.093 ± 0.007 even
when the substrate is flattened and relaxed as shown in Figure
3b. However, not all tensile strain will result in an enhancement.
For the tensile strain to enhance the θeff, the direction at which
the strain is applied is crucial. Applying strain in the orthogonal
direction did not affect the θeff, which is consistent with previous
work.28 Based on θeff = TintθSH, where θSH is the spin Hall angle
of Pt, the origin of the θeff enhancement can be categorized into
either (i) an interfacial or (ii) bulk effect. To better comprehend
the physics and distinguish between the two effects of strain on
the Pt/Co interface, spin transparency and XMCD were
measured. FMR measurements were performed on a Pt/Co
bilayer thin film, and the εpost strain was applied before
measurement. Plotting θeff as a function of ρPt, a linear relation
is observed in Figure 3c. Both θeff and ρPt increase by about 40%
when εin = 1.5% is applied. However, the increase in θeff is lower
than previous work reporting that the increase in resistivity will
result in a much greater increase in spin Hall angle.26 Varying
pressure during film deposition affects the growth condition of
the HM layer directly as compared to the use of mechanical
strain. Hence, it is difficult to compare the two methods directly,
as their effects on the HM layer to change the resistivity are

Figure 3. Spin Hall efficiency (a) as a function of in situ tensile strain εin and (b) after applying tensile strain εpost for the Pt/Co bilayer. (c) Spin
Hall efficiency dependence of the electrical resistivity of Pt. (d) Spin Hall resistivity of Pt dependence of tensile strain.
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different. From Figure 3d, the spin Hall resistivity, ρSH = θeffρPt,
increases in a similar trend to θeff when strain is applied.
Gilbert Damping and Spin Transparency Analysis. The

effective Gilbert damping (αeff) was calculated from the line
width of the FMRmeasurement of the Pt/Co bilayer, which can
be expressed as ΔH = ΔH0 + 4πfαeff/γ, where ΔH0 is the
inhomogeneous broadening term originating from sample
imperfections, which are assumed to be frequency independent.
Two-magnon scattering is not observed in the data due to the
linear dependence of the FMR line width with frequency (refer
to SI, Figure S4).38 The magnetic proximity effect is assumed to
be negligible as theMS of Co falls within range of pure Co bulk
(refer to SI, Figure S3b).34,39−43 The αeff of the Pt/Co bilayer is
mainly contributed by the intrinsic Gilbert damping (αint) from
Co and the damping introduced by spin pumping effect (αSP)
due to the adjacent Pt.44,45 A Pt thickness dependence of spin
pumping induced damping was performed as shown in Figure
4a, and their relation can be described by

g

M t t
G

4 ( )
(1 e )t

eff int
B

S FM d

2 /NM SDα α
μ

π
= +

−
− λ↑↓ −

(3)

where g is the g-factor, td is the magnetic dead layer thickness,
G↑↓ is the effective spin-mixing conductance due to Pt, and λSD is
the spin diffusion length. Using the obtained αSP, the two main
Gilbert damping contributions are consolidated and compared
in Figure 4b. The change in intrinsic damping from the Co is
negligibly small as compared to the decrease in αSP. This
outcome matches our XRD result that the Co lattice constant is
not affected by εpost. Pt on the other hand is greatly affected by
the tensile strain, and since αSP is heavily dependent on the
interface between Pt and Co, any deterioration of the interface
will translate to a decrease in αSP. The effective damping drops
by 40% from (1.7 ± 0.1) × 10−3 to (0.99 ± 0.06) × 10−3

primarily attributed to the decrease in αSP.
From Figure 4c, the εpost dependence of the spin diffusion

length and spin-mixing conductance of the Pt/Co bilayer is

shown. The spin diffusion length increases inversely with the
spin-mixing conductance when strain is introduced. Based on
the Elliott−Yafet (EY) mechanism, an increased Pt electrical
resistivity should lead to shorter spin diffusion length; however
the opposite is observed. This indicates a possible decrease in
interfacial spin−orbit coupling (ISOC), which was reflected
from the XMCD analysis later.46

The interfacial intrinsic spin transparency Tint between an
FM/HM is more often than not below unity due to two main
contributing phenomena known as spin memory loss (SML)
and spin backflow (SBF). SML is the interfacial spin−orbit
scattering that results in a loss in spin transmission. For a Pt/Co
interface with in-plane magnetic anisotropy, the effects of SML
on Tint can be approximated using Tint

SML ≈ 1 − 0.23KS.
25,27,47

SBF on the other hand is attributed to the finite spin-mixing
conductance at the interface and can be analyzed using the drift-
diffusion model given by

T
G t

G t h e
tanh( /2 )

coth( /2 ) ( / )( /2 )int
SBF NM SD

NM SD SD
2

λ
λ σ λ

=
+

↑↓

↑↓
(4)

where Tint
SBF is the spin transparency and σ is the electrical

conductivity of Pt.25,27,48,49 Figure 4d shows the effects of tensile
strain on the Tint

SML and Tint
SBF along with the Tint, which can be

obtained by taking the product of the two contributing factors.
At εpost = 1.5%, the Tint decreases by 48% from 0.37 ± 0.06 to
0.19± 0.03 with the majority of the effect coming from the Tint

SBF.
The greater decline in Tint

SBF as compared to Tint
SML is hypothesized

to be attributed to the change in interfacial spin−orbit
interaction at the Pt/Co interface. This decrease in Tint suggests
that the enhancement in θeff is not a result of an improvement of
the interfacial quality.

XAS/XMCD Measurement. To further verify that the θeff
enhancement is not attributed to the interface between the Pt/
Co bilayer, XAS/XMCD measurements were performed. The
total electron yield intensities μ+ and μ− around the L2 and L3

Figure 4. (a) Damping parameter due to spin pumping of the Pt/Co bilayer with varying Pt thickness for samples after εpost application. (b) αeff,
(c) λSD and G↑↓, and (d) spin transparency Tint as a function of εpost application.
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edges for Co (770−810 eV) were measured at the grazing
incidence, as shown in Figure 5a and b. By applying the sum
rules to the XMCD spectra, the orbital to spinmagnetic moment
ratio (mL/mS) can be obtained as follows:

m
m

q
p q

2
9 6

L

S
=

− (5)

where p is the integral of the dichroic signal of the L3 peak alone
and q is the integrated dichroism over both the L2 and L3
edges.26,50,51 The mL/mS ratio of Co decreases by 22% from
0.394 ± 0.03 to 0.304 ± 0.02 when the strain was applied,
implying a reduction in spin−orbit coupling.52,53 This suggests
that the enhancement in θeff, revealed by our spin transparency
measurement, is not caused by an enhanced ISOC, while the
bulk effect may prevail. The decreasing trend of Co mL/mS ratio
upon the strain application seems to be in line with the inverse
proportional relationship between λSD and ISOC.46

To date, it has been reported that the intrinsic scattering
mechanism dominates over the extrinsic in 4d and 5d transition
metals such as Pd, Pt, Ta, and W.3,13 In a nonalloyed metal such
as Pt, the side jump scattering contribution can be assumed to be
negligibly small as compared to the skew-scattering.54 There-
fore, the only extrinsic contribution considered in the Pt/Co
system is the skew-scattering. By assuming the total spin Hall
conductivity of the system to be the sum of the intrinsic and
extrinsic contribution, the spin Hall resistivity can be expressed
by the following equation:

SS
SH SH

int
Pt
2

SHρ σ ρ ρ− = − (6)

where σSH
int is the intrinsic spin Hall conductivity of Pt and ρSH

SS is
the spin Hall resistivity influenced by the skew-scattering
mechanism.55,56 By plotting the |ρSH| as a function of the ρPt

2 in
Figure 5c, σSH

int is found to be e(1.79 0.05) 10 ( /2 ) m5± × ℏ Ω ,
which is consistent with previous reports of a value of 1.6 ×

105(ℏ/2e) Ωm.57,58 Since there is little change to the intrinsic
contribution of Pt, this implies that the source of the
enhancement is contributed by extrinsic scattering. From the
l i n e a r r e l a t i o n , σ S H

S S i s c a l c u l a t e d t o b e
e(1.09 0.06) 10 ( /2 ) m5± × ℏ Ω . Additional skew-scattering as

a result of the tensile strain makes up for 38% of the total spin
Hall conductivity, and this is larger than previous works
reporting only 28% contribution by varying the deposition
condition of Pt.54,57 Due to the nature of nonalloyed metals, the
contribution from the intrinsic scattering in Pt dominates.
However, the extrinsic contribution from the skew-scattering
grows when tensile strain is introduced, resulting in enhanced
θeff. Apart from the θeff enhancement, another benefit of the use
of tensile strain is the reduction in the switching current density
JC0 required for an SOT device. JC0 can be estimated using the
following equation:

J
e M

M t
2 4

2C
eff

eff

eff
S FM0

α
θ

π
≈

ℏ
i
k
jjj

y
{
zzz

(7)

Since JC0
is proportional to the ratio between αeff and θeff, a

decrease in the ratio implies a lower JC0
, as shown in Figure 5d. At

εpost = 1.5%, JC0
decreases by 65%, making tensile strain a very

viable and flexible method of achieving low-power-consumption
SOT devices.

CONCLUSIONS
In summary, we have demonstrated the use of tensile strain to
enhance θeff and showed that 78% of the enhancement can be
retained even after removing the strain. The result from spin
transparency and XMCD measurements suggests that the
enhancement is of bulk origin. With strain treatment, the spin
Hall angle, θSH = θeff/Tint, of Pt could potentially bemuch greater
than the previously reported value of ∼0.30 after accounting for

Figure 5. (a) Normalized XAS at the Co L2,3 absorption edge. (b) Corresponding normalized XMCD spectra with their integrated intensities.
The vertical arrows indicate the values of p and q, derived from the integrals of the dichroic signals. (c) Spin Hall resistivity as a function of the
squared Pt resistivity. (d) Normalized switching current density as a function of εpost application.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.0c09404
ACS Nano XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09404?fig=fig5&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.0c09404?rel=cite-as&ref=PDF&jav=VoR


the spin transparency at εpost = 1.5%.59 Moreover, the JC0
required is drastically reduced due to the decrease in the αeff/
θeff ratio. Our findings will aid in the development of power-
efficient and flexible spintronics devices through mechanical
strain engineering. Directional control of strain during
application plays a critical role in the device functionality, and
one potential approach includes the use of a microelectrome-
chanical system (MEMS) and origami architected microbots,
which can guide strain in a specific direction.

METHODS
Sample Growth and Preparation. All samples were sputter-

deposited onto an unstrained Kapton substrate at room temperature
using an Ar pressure of 2mTorr and a base pressure lower than 5× 10−8

Torr. Two-inch-diameter targets with a purity of 99.99% were used.
The stacked structure used for this study is flexible Kapton substrate/Ti
(5 nm)/Pt(tNM nm)/Co(5 nm)/Ti (5 nm) with tNM fixed at 5 nm for
the spin Hall efficiency measurements. Five nanometers of Ti was
introduced at the top and bottom to improve adhesion and prevent
oxidation of the stacked structure. Resistivities of Pt microstrips were
determined using a semiconductor analyzer, and the microstrips used
were fabricated using optical lithography. The ST-FMR devices were
then patterned into 10 μm × 50 μm rectangular microstrips using an
optical lithography technique; thereafter a coplanar waveguide (CPW)
structure was fabricated onto the strips. Plastic molds of predetermined
curvature for the application of tensile strain were 3D printed using a
polylactic acid filament.
Characterization and Electrical Measurement. For in situ strain

(εin) samples were strained during the measurement, while strain-
treated (εpost) samples were strained for 60 min before their respective
measurements. The magnetization of the Co layer and the crystallinity
of the stack were measured using a vibrating sample magnetometer and
X-ray diffraction technique. RF current was generated from the
Keysight N5183B analog signal generator and injected into the CPW
electrode. The microwave power was fixed at 12 dBm, and the
measured frequencies were varied between 8 and 17 GHz with an
increment step size of 1 GHz. The θeff values are averaged across five
devices. An in-plane external magnetic field (Hext) is swept while
injecting RF current at 45° relative to one another. The rectified DC
voltage is then passed through a bias tee and into a Zurich Instruments
lock-in amplifier for detection. The Gilbert damping was used to obtain
the spin pumping contribution, and spin transparency was measured
using FMR.
X-ray Magnetic Circular Dichroism Measurement. XMCD

measurements were performed at the Co L2,3 edge using circularly
polarized X-rays at the Surface, Interface and Nanostructure Science
(SINS) beamline of the Singapore Synchrotron Light Source.60,61 All
spectra were measured at room temperature in the total-electron-yield
mode with a fixed helicity of 80% circularly polarized X-rays and
opposite magnetic fields up to ±1 T. The angle of incidence of the
photon beam was positioned at 60° with respect to the sample surface
normal. The orbital to spin magnetic moment ratio was extracted using
the sum rules.
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